

ICOM 5047

Communication System Design
Signal Processing Experiments

Shawn Hunt

January 2005

Index
 page

Introduction …………………………………………………………………. 3

Experiments

1. Using the DSK Tools …………………………………...……………….. 5

2. FIR filter implementations …………………………………………. 13

3. Filter Realizations …………………………………………………. 16

4. IIR filter implementations …………………………………………. 20

5. Multirate System implementation ………………………………….. 22

6. Audio Effects …………………………………………………………….. 28

7. Signal quantization and coefficient precision (Round-off) effects ….. 32

8. Fast Fourier transform (FFT) implementation ..………………………..… 37

9. Integrating Assembly Subroutines with programs in C ………………….. 39

Introduction

Our experience has been that students are interested in implementing stuff in hardware. In
the academic setting, this means learning how to apply knowledge gained in previous
classes where the emphasis has been on theory. In this class, the emphasis is placed on
doing. Going beyond simply playing with hardware, the purpose of the class is to provide
the student with a major design experience in the area of communication and signal
processing. This major design experience means going through all phases of a design,
from initial problem statement to implementation.

A major design experience has many phases or steps. Of all the things the student must
do in the design experience, the only thing the students may not have seen before will
probably be the DSP hardware. Preparing for the implementation part of the design will
mean learning about the hardware its software tools. In order to facilitate this, the class is
broken into two parts, the first consisting of eight experiments, the second consisting of
the project.

The firstexperiment introduces the hardware and software tools. They first learn the
assembler and debugger, and how to run programs on the DSK. They next learn how to
select a desired sampling rate, and how to compile and run programs in C.
There are six experiments where the student implements signal processing algorithms,
including FIR and IIR filters, multirate systems, and FFTs. The seventh experiment has to
do with precision and quantization, and the last experiment has to do with integrating C
and Assembly programs.

There were three important considerations when designing the experiments. First, have
the students learn by doing. This was done by having the students learn most of the skills
needed for the project with hands-on experiments. Second, the emphasis in this class is
on the interface between hardware and software for signal processing applications. The
students have been exposed to hardware and assembly programming before, but not
necessarily in a product or solution driven environment. We want the students to learn as
much as possible, but not forsaking the learning by doing policy. To this end, in many of
the experiments the students implement two equivalent algorithms, one written in
Assembly, the other in C. The assembly programs come included with the class book,
and the programs in C are written by the student. The third consideration is that the class
is only one semester long. Combining this with the fact that the emphasis will be on
designing and implementing a solution to a real world problem, many usefull subroutines
are provided to the students instead of having them write code. The subroutines needed
for accessing the A/D and D/A converter, and also an FFT coded in assembly are
provided. Since all experiments involve the dsp board, it is inevitable that the student will
learn about it and its assembly language. What we are trying to achieve is a balance
between hardware/assembly and signal processing.

The experiment descriptions are purposely written in a terse manner. Since they are to be
done in preparation for a capstone design project, a cookbook approach is not desired.
Instead, each experiment is discussed in class before given to the students. The students

should have a clear idea of what is to be done in the experiment, but they must think
about how to do it. This is built up gradually, starting of with very simple experiments,
leading to more involved ones. The first two experiment descriptions are very specific,
giving the commands needed to generate the desired output. It is also desirable for the
student to learn to use reference materials. This means reading about the theory in from
other sources, and also reading the manuals included with the DSK and its assembler.

The equipment available in the lab is:

• PCs
• C31 DSKs
• Oscilloscopes
• Function generators
• Multimeters
• Spectrum analyzers

Software available is:

• Programs from the class book, "Digital Signal Processing:Laboratory
Experiments using C and the TMS320C31 DSK," 'by Rulph Chassaing.

• Matlab
• C compiler for the PC
• C compiler for the DSK
• Assembler for the DSK

1. Using the DSK Tools

Purpose

The purpose of this experiment is to learn how to use the DSK software tools, initialize
the AIC, and to actually run Assembly and C programs on the DSK. The tools include the
Assembler, debugger and C compiler. Initializing the AIC includes setting the desired
sampling rate and filter bandwidths.

Background

Assembler and Linker

A program written in Assembly language passes through two steps in producing an
executable file.

Figure 1.1. Steps from assembly program to executable file.

The assembler takes the assembly program and translates it into machine language that
the processor understands. Although the resulting program is in machine language, it
cannot be run without specifying external references and the memory to be used. This is
the linkers job. The linker, as the name implies, takes the machine language program and
links it with other machine language programs where the subroutines and/or data are
defined. The linker also specifies the interface between the program and the hardware. In
other words, it specifies where in memory the program and the data will be placed.

The program dsk3a does both the assembling and linking. The command

>>dsk3a matrix.asm
will assemble and link the program matrix.asm and produce an executable output called
matrix.dsk. A more complete description of the Assembler is found in Chapter 5 of the
TMS320C3x DSP Starter Kit User's Guide.

Boot Loader

There are two ways of loading executable files into the DSK, the boot loader, and the
debugger. The boot loader is a program that downloads an executable file from the PC
into the DSK and runs it. This can be done with the command

>>dsk3load sine4p.dsk

AssemblerAssembly
Program

Other
Machine Language

Programs

LinkerMachine
Language

Executable
File

Debugger

The debugger is a program that allows not only programs to be loaded and run on the
DSK, but also allows the user to view the DSK registers and memory and the program
being executed. A more complete description of the Debugger is found in chapter 7 of the
TMS320C3x DSP Starter Kit User's Guide. The debugger is run using the command

>>dsk3d reset

The debugger has four windows, the COMMAND window, the DISASSEMBLY
window, the CPU REGISTERS window and the MEMORY window. See Figure 1.2
below.

Figure 1.2. The Debugger program interface

The program starts in the COMMAND window. A summary of commands can be seen
by typing help at the prompt. A few of these commands are shown below.

load test.dsk loads the program test.dsk
F5 run the program
F8 single step through the program
ALT-D go to the DISASSEMBLY window
ALT-C go to the CPU REGISTERS window
ALT-M go to the MEMORY window
Esc return to the COMMAND window
reset Reset the DSK board
quit or exit Exit program
help Summary of commands

The registers R0-R7 (shown as F0-F7 in the debugger) are 40 bits long, and are used for
floating point numbers. From the Command window press

F3 to see registers R0-R7 in float
F2 to see registers R0-R7 in hexadecimal

The memory used in the C31 is 32 bits long. The values can be displayed in hexadecimal,
float or integer format. The format for saving float and integer numbers is different, so
the values will be different if displayed in integer or float format. For example, a float
value of 2 will be shown as +2.0000000000e+00 in float and 16777216 in integer. An
integer value of 2 will be shown as 2 in integer, and as +1.0000002384e+00 in float.
From the Command window type

memf to display the memory values in float
memi to display the memory values in integer
memx to display the memory values in hexadecimal

Using the C compiler
In this experiment you will use the DSK floating point tools to compile, assemble and
link a program written in C. These tools include three programs, cl30, asm30 and lnk30.
To convert a program written in C into an executable file that can be run on the DSK, it
needs to go through three steps shown in figure 2.2.

Figure 2.2. Steps from C program to executable file

The Program is first compiled and assembled. Both steps can be done with the command
cl30. For example, to compile and assemble the program loopc.c, use

>>cl30 loopc.c
This program will give loopc.obj as output. To compile and assemble separately, use the
commands

>>cl30 loopc.c -n
>>asm30 loopc.asm

The -n option for cl30 makes it only compile, giving loopc.asm as output. The second
program, asm30, will give loopc.obj as output.
Finally, the program is linked to produce an executable file.

>>lnk30 loopc.cmd
The linking resolves external function calls and determines how the system memory will
be used. The linking program needs to know which programs to link together, what
memory is available, and where to put each part of the program. This can be done from
the command line, or can be written in a command file. The file loopc.cmd has this
information for this example and is shown below.

C
Program

lnk30 asm30

cl30

Assembly
Program

Other
Machine Language

Programs

Linker Machine
Language

Executable
File

Compiler Assembler

/*LOOPC.CMD - COMMAND FILE FOR LINKING */
-c /* USING C CONVENTION */
-stack 0x100 /* 256 WORDS STACK */
-heap 0x100 /* 256 WORDS HEAP */
vecs_dsk.obj /* INSTALL INTERRUPT */
loopc.obj /* MAIN PROGRAM */
-O loopc.out /* LINKED COFF OUTPUT FILE */
-l rts30.lib /* RUN-TIME LIBRARY SUPPORT*/
MEMORY
{
 RAMS: org = 0x0809800, len = 0x2 /*BOOT STACK */
 RAM0: org = 0x0809802, len = 0x03FE /*INTERNAL BLOCK 0 */
 RAM1: org = 0x0809C00, len = 0x03C0 /*INTERNAL BLOCK 1 */
 VECS: org = 0x0809FC5, len = 0x0040 /*VECTORS */
}
SECTIONS
{
 .text: {} > RAM0 /* CODE */
 .cinit: {} > RAM0 /* INITIALIZATION TABLES */
 .stack: {} > RAM1 /* SYSTEM STACK */
 .bss: {} > RAM0 /* BSS SECTION */
 vecs: {} > VECS /* VECTOR SECTION */
}

Figure 2.3. Command file used to link loopc

The first part of the program specifies that the programs to be linked are loopc.obj and
vecs_dsk.obj. The output is written to looopc.out, and the library is rts.lib. The second
part of the program called MEMORY specifies the starting address and the length of each
available memory segment and defines a name for it. For example, there is a memory
segment starting at the address 809C00h with length 3C0h and is given the name RAM1.
The final part is called SECTIONS and defines where in memory each part of the
program and data will be placed. The text is where the program is located, the stack is
where the local variables are stored, and bss is where the global and static variables are
stored.

Initializing the AIC and Selecting Sampling Rates

Analog input and output is done by the AIC (Analog Interface Circuit).

Figure 2.1. Connections between the C31 and the AIC

C31

TCLKO

Serial Port out
Serial Port in

AIC
Analog in

MCLK
Analog out

Data in
Data out

There are three main connections between the C31 and the AIC, a Clock and a Serial Port
in and out. A timer on the C31 generates a signal (TCLKO) used as the Master Clock
(MCLK) of the AIC. This timer, the C31 serial port, and the AIC must be initialized
before the AIC can be used. The initialization sequence is:

Initialize the C31 timer
Initialize the C31 serial ports
Initialize the AIC

The C31 TCLKO output can have a maximum frequency of 12.5 MHz (50MHz/4), but
the MCLK input on the AIC can have a maximum frequency of 10 MHz. In the supplied
programs, the C31 timer is initialized for a frequency of 6.25 MHz (50MHz/8).

Initializing the AIC includes setting four registers that determine the input and output
sampling rates, the input and output filter bandwidths, and control data. These are shown
in figure 2.2.

bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X TA X X RA 0 0
X TA' X RA' 0 1
X TB X RB 1 0
X X X X X X X X Control 1 1

Figure 2.2. AIC Registers (X indicate don’t cares)

See figure 4-8 of the TMS320C3x DSP Starter Kit User's Guide. RA and RB determine
the input sampling frequency and the cutoff frequency of the anti-aliasing filter. TA and
TB determine the output sampling frequency and the cutoff frequency of the
reconstruction filter. The equations are similar for both, so they will be shown only for
the transmit case.
The equations for determining the filter bandwidth and the sampling frequency are:

Example 2.1

Suppose we want an input and output sampling rate of 8kHz, and input and output filters
with a bandwidth of 3,600Hz. Let the master clock frequency be 6.25MHz.

From the first equation above, we have,

.
2
25.6

288
36003600

⋅
=

TA
MHz

kHz
HzHz

.
2 TBTA
MCLKFs ⋅⋅

=

⋅
=

TA
MCLK

kHz
HzBW

2288
3600

Solving for TA,

Represent this in binary using the closest integer

The actual bandwidth of the filter is then,

From the second equation we have

or solving for TB

Again, rounding to the nearest integer and expressing this in binary is

The actual sampling frequency is

Thus, TA=010112, and TB=1001002. These numbers must be put into the format shown
in figure 4-8 of the TMS320C3x DSP Starter Kit User's Guide (also shown in figure 2.2).
Note that the number sent to each register in the AIC is two bytes (16 bits) long:

Using zeros for the don’t cares (X's),
Register 1

0 0 TA 0 0 RA 0 02 = 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 02 = 162Ch

 1 6 2 C

Register 3
0 TB 0 RB 1 02 = 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 02 = 4892h

.891,7
36112

25.6 HzMHzFs ≈
⋅⋅

=

.10010036 210 =

.51.35
8112

25.6
2

=
⋅⋅

=
⋅⋅

=
kHz

MHz
FTA

MCLKTB
s

,
2

8000
TBTA

MCLK
⋅⋅

=

.551,3
112

25.6
288
3600 HzMHz

kHz
HzBW ≈

⋅
=

.0101111 210 =

.85.10
36002

25.6
288
3600

=

⋅
=

MHz
kHz
HzTA

The programs supplied with the class book initialize the AIC requiring only the numbers
for the four registers. An example of these numbers for C and Assembly programs is
shown in example 2.2. Note that hexadecimal numbers can be identified using 0x or h.

Example 2.2

C program:

int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*Config data for AIC*/

Assembly program:

AICSEC .word 162Ch,1h,4892h,67h ; Fs = 8 kHz

Notice that these are the first and third numbers determined in example 2.1. This means
that the sampling rate in this example is 7,891Hz, and that the anti-aliasing and
reconstruction filters have bandwidths of 3,551Hz. The fourth number configures the
control register of the AIC. The control register is used to set many parameters, including
the anti-aliasing filter. Use figures 4-8 and 4-9 of the TMS320C3x DSP Starter Kit User's
Guide to determine how to include or remove the anti-aliasing filter.

Experiments:

Experiment 1.1
Do example 1.1 in the book.

Experiment 1.2
a. Assemble and run loopi.asm. Connect the function generator as input, and see and hear

the output. When you have verified that the hardware is working, make shure the
sampling rate is 8kHz.

b. Remove the anti-aliasing filter from the input. Connect the oscilloscope so you can see
both the input and output. Increase the frequency of the input to above 4kHz. Verify
that the Nyquist frequency is 4kHz, and that there is aliasing in the system. For
example, with the frequency of the signal generator set to 6kHz, what is the frequency
of the output? Why?

c. Change the sampling rate to 10kHz. What is the Nyquist frequency? With the signal
generator set to 6kHz what is the output frequency? What should the output frequency
be for an input of 7kHz? Why?

Experiment 1.3
a. Compile, assemble, link and run loopc.c. Make sure the sampling rate is 8kHz.

b. Connect the oscilloscope so you can see both the input and output. Remove the anti-
aliasing filter, input a sine of 300Hz and determine the delay from input to output.
Increase the frequency and verify that the system has linear phase.

c. Modify loopc.c so that every other sample is multiplied by -1. With the frequency
generator connected to the input, vary the input from 400 to 4kHz. Observe the output.
Explain why this happens. Connect music or speech to the input and listen to the
output.

d. Modify loopc.c so that every other sample is set to zero. Connect the function
generator and input a sine wave from 400 to 4kHz. What is the frequency response of
the system?

(c and d from Sorensen and Chen, 1997)

Skills: Upon completing this experiment you should:

• Know how to connect the DSK using the parallel port and the AIC
• Know how to use the assembler/linker dsk3a
• Know how to use the boot loader, dsk3boot, to run a program.
• Know how to use the debugger, dsk3d, to load and run a program and to see

memory and register values in all formats
• Know how to initialize the codec for any desired sampling rate
• Know how to change the cutoff frequency of the input and output filters
• Know how to remove the anti-aliasing filter from the input of the AIC
• Know how to compile, assemble and link a program written in C

2. FIR filter implementations

Purpose

The purpose of this experiment is to implement FIR filters in real time.

Background
In this experiment, an FIR filter will be implemented in real time. There are various
things that make this experiment challenging. First, the program for filtering must be
implemented in C. The C code for implementing an FIR filter is simple, but may cause
problems because this program is meant to work in real time. In previous classes,
convolutions have been done by hand or in MATLAB. This is the first time a convolution
will be done in real time.

In the real time filter, the convolution is implemented by using the difference equation
directly. Using x[n] as the input and y[n] as the output, the difference equation for an FIR
filter is,

This experiment is also challenging because this may be the first design implemented in
hardware. The design may meet the specifications in MATLAB but fail when
implemented on the DSK. The AIC used for input and output is not perfect, and this must
be taken into account when designing the filter. For example, in one of the designs the
output must be between 0 and -1 dB from 1000 to 3000Hz. If the AIC amplifies the
signal, then it must be attenuated by the digital filter in order to stay below 0 dB.

Having to show that the design meets the specifications is the final challenge. This means
using the function generator along with the oscilloscope and multimeter to show that the
filter is linear phase and that it meets the magnitude specifications.

Design and implementation are generaly done in steps. If the problem is very simple it
may be possible to design and implement all at once, but this is generally not the case. In
most cases, the design and implementation are broken into parts, and each part is verified
to work before moving on to the next part. In this experiment, the problem is not difficult,
but it is difficult to verify what is going on in the DSK if the output is not what you
expect. I have seen the same thing happen many times: a student writes the complete
code for the DSK in C and runs it. It does not work, and the student has no idea why.
Instead of implementing the solution all at once on the DSK, it is better to implement a
very simple filter on the PC. This way every step of the problem will be easily veryfiable,
and easy to debug. A program written for this experiment will also help with other
experiments and probably with your final project.

I would recommend the following procedure. Start with a program on the PC that can
read and write numbers from a simple ASCII file. This would basically be the loopc.c
program from the DSK, but for the PC. Once this program is running, use it to implement
a very simple, say third order, FIR filter. Make shure that the numbers are read and

].1[...]1[][][110 +−++−+= − Nnxhnxhnxhny N

written from the files simulating what is done on the DSK. In other words, instead of
reading all the values at the beginning, read one value from the file, compute the output,
write it to another file, read the next value, etc. This C program on the PC is very simple
to debug, because you can write the values at each step to the screen. Select the filter
coefficients and the input so that the output is easy to calculate by hand and see if the
program is doing what you want. Once this program is running, then go ahead and
implement the filter on the DSK.

Experiments

Experiment 2.1
Design a FIR linear phase filter in Matlab for the magnitude specifications given in
Figure 2.1. Implement the filter using firnc.asm. The filter must meet the specifications in
MATLAB, but does not need to meet the specifications when implemented on the DSK.
a. Set the sampling frequency to 8kHz. What is the cutoff (-3dB) frequency in Hz?
b. Change the sampling frequency to 10kHz. What is the new cutoff frequency? What

should it be theoretically?
c. Graphically show how the memory of the DSK is used for the filter. Include all code

and data.

Experiment 2.2
Design a minimum order FIR linear phase filter for the magnitude specifications given in
Figure 2.2 in Matlab.
a. Modify loopc.c to implement the filter. Show that the filter you implement on the DSK
meets the specifications.
b. Modify the filter program from part (a) so that the program runs as fast as possible.

Experiment 2.3
Determine the largest order FIR filter that is implementable on the DSK for a given
sampling rate. Do this for both the program firnc.asm and the program in C that you
wrote. Verify experimentally that your results are correct.

Figure 2.1. Specifications for the Lowpass filter of experiment 3.1.

π .5π

ω (rad/sam)

 2
-2

-10

.3π

dB

Figure 2.2. Specifications for the Bandpass filter of experiment 2.2.

Skills: Upon completing this experiment you should:

• Have reviewed how to design FIR filters using MATLAB
• Know how to implement an FIR filter on the DSK
• Know how to verify the specifications of the implemented filter using a function

generator, an oscilloscope and a multimeter

f (Hz)

 0
-1

-20

500 1000 3000 3500

dB

3. Filter realizations

Purpose

The purpose of this experiment is to implement FIR and IIR filters with different
realizations and verify the advantages of each.

Background

A filter is usually represented in a block diagras as:

Figure 3.1 Filter Representation

 Series and Parallel Implementations

Since the transfer function of the filter H(z) is usually a polynomial, it can be factored in
two different ways.

(Obviously, the Hk(z) in the first factorization is not the same as the Hk(z) in the second
implementation.) This leads to series and parallel implementations.

Figure 3.2. Series and Parallel Implementations.

IIR filters can be factored for series or parallel implementations and both are used in
practice. FIR filters are usually only factored for series implementation since a parallel
factorization is difficult. Performing the factorization reduces the order of the filter, but
these reduced order filters must still be implemented. The implementation for both IIR
and FIR filters is discussed below.

.....
uM-1(n)

u2(n)
y(n)x(n)

H1(z)
u1(n)

H2(z)

HM(z)

..... uM-1(n)u2(n)
y(n)x(n) H1(z)

u1(n)
H2(z) HM(z)

x(n) H(z) y(n)

)(....)()(
)(....)()()(

21

21

zHzHzH
zHzHzHzH

M

M

+++=
⋅⋅⋅=

 IIR Filters

If the filter is IIR, then difference equation is of the form,

The most straight forward implementation of this equation is then,

Figure 3.3. Direct Form I implementation.

This implementation is called Direct Form I. It can be re-arranged to get,

Figure 3.4. Direct Form II implementation.

y(n) x(n)

z-1

z-1

z-1

b1

b2

b0

b0

a1

a2

a0

y(n) x(n)

z-1

z-1

z-1

b1

b2

b0

b0

z-1

z-1

z-1

a1

a2

a0

].1[...]1[]1[...]1[][][11110 +−−−−−+−++−+= −− MnyanyaPnxbnxbnxbny MP

This second implementation is called Direct Form II. Notice that the Direct Form II
implementation uses half the delay units as Direct Form I if there are the same number of
a and b coefficients. This could be usefull in cases where memory is at a premium.

 FIR Filters

If the filter is FIR, then difference equation is of the form,

As with IIR filters, the most direct implementation is of the form,

Figure 3.3. Direct Form I implementation.

In most references, the summations are done in the opposite sequence, and the
implementation is presented as,

FIR filters are typically linear phaese, so a filter with N coefficients can be implemented
with N/2 or N/2+1 multiplications depending on whether N is even or odd.

y(n)

x(n) z-1 z-1 z-1

b1 b2b0 bN

y(n)x(n)

z-1

z-1

z-1

b1

b2

b0

b0

].1[...]1[][][110 +−++−+= − Pnxbnxbnxbny P

Experiments

Experiment 3.1
Modify the loopc.c program to implement IIR filters.
Implement an IIR filter with coefficients: b0=0.01856301062690 b1=0.07425204250759
b2=0.11137806376138 b3=0.07425204250759 b4=0.01856301062690
a1=-1.57039885122817 a2=1.27561332498328 a3=-0.48440336833509
a4=0.07619706461033.
a. In Direct Form I
b. In Direct Form II
(You must know how the the precision of the numbers used in your program for the
DSK)

Experiment 3.2
Modify the loopc.c program to implement the IIR filter of Experiment 3.1 in
a. Series Implementation
b. Parallel Implementation

Experiment 3.3
Implement an FIR filter with coefficients
b0=0.01016679616854 b1=0.11770625684932 b2=0.37212694698214
b3=0.37212694698214 b4=0.11770625684932 b5=0.01016679616854
using only three multimplications to calculate each output value.

Skills: Upon completing this experiment you should:

• Know the precision of various classes of variables on the DSK
• Know how to implement IIR filters in Direct Form I and II
• Know how to implement IIR filters in series and parralel connections
• Know how to implement FIR filters efficiently

4. IIR filter implementations

Purpose

The purpose of this experiment is to implement an IIR filter in real time and to work with
an open ended problem.

Background
The first part of this experiment is similar to experiment 3, except that the filter is IIR
instead of FIR. The difference equation for an IIR filter is shown below,

It is similar to the difference equation for an FIR filter, so the C program written in
experiment 3 can be used for IIR filters with minor modifications.

The second part of the experiment is an open ended problem. Open ended problems are
problems with no set solution. Use the supplied wave file. It is a recording of people
speaking with background noise. You will design a filter (it may be FIR or IIR) so that it
sounds better. This is real design! In 5309 you calculated coefficients for given
specifications, but here you must select the specifications yourself. As mentioned above,
there is no one 'best' solution, and you may have to go through many iterations to find
one that works well. As is generally the case, you will want to do much or most of the
design using MATLAB, then implement it on the DSK.

Experiments
Experiment 4.1
Design a minimum order IIR filter for the magnitude specifications given in Figure 4.1
using Matlab. Use iir6bp.asm to implement this filter. Verify that the system is not linear
phase. Show that the filter you implement on the DSK meets the specifications. How
does the implementation on the DSK compare with the magnitude and phase predicted by
MATLAB?

Figure 4.1. Magnitude specifications for lowpass filter.

1900
f (Hz)

 0
-1

-20

1500

dB

].1[...]1[]1[...]1[][][11110 +−−−−−+−++−+= −− MnyanyaPnxbnxbnxbny MP

Experiment 4.2
Modify loopc.c to implement an IIR filter that meets the same specifications as in
experiment 4.1. Implement the filter in Series, with each cascade filter having order 2 or
lower. Show that the filter you implement on the DSK meets the specifications.

Experiment 4.3
Design a filter (FIR or IIR) to make the given wave file sound better.

Skills: Upon completing this experiment you should:

• Have reviewed how to design IIR filters using MATLAB
• Know how to implement an IIR filter on the DSK
• Have practiced designing filters for open ended problems

5. Multirate System implementation

Purpose

The purpose of this experiment is to use FIR filters in a modern signal processing
implementation.

Background

This process of changing the sampling rate of a signal in the discrete time domain is done
by what are called multirate systems. These multirate systems can be used to increase or
decrease the sampling rate. Many digital systems use multirate techniques. One case is
where we need to link two digital communication systems that have different sampling
rates. Other cases have to do with hardware implementation. Most of the A/D converters
on the market are sigma-delta converters, which sample at a very high sampling rate, then
convert the digital data into a lower sampling rate. In most CD players, there is a
multirate system that does 'oversampling'. This technique of oversampling means
increasing the sampling rate of the data. Both the sigma-delta A/D converters and
oversampling CD players use multirate systems because of hardware considerations. In
other words, it is easier to get a certain level of performance with multirate than without
it. Lets look at one example of changing the sampling rate in more detail.

The first CD players that came on the market did not use oversampling. The data was
sent to the D/A converter at the CD sampling rate of 44.1kHz, and converted to analog.
The digital to analog converter includes a reconstruction filter to eliminate the high
frequency repetitions of the signal. If the original signal had frequency components to
20kHz, then there will be repetitions starting at 24.1kHz (44.1-20). See figure 5.1.

Figure 5.1. Signals before reconstruction filter with sampling rates of 44.1 and 352.8kHz

The CD system has 16 bits, and a SNR of about 98dB. Thus, we would like a analog
lowpass filter with a passband to 20kHz, and a stopband at 24kHz with an attenuation of
at least 98dB. Remember that there is a 90" phase shift for each pole in the system. Thus,
this filter will have a large phase shift, especially near the cutoff frequencies. Some
people theorized that this phase shift had a negative effect on the sound of these CD
players. Oversampling can alleviate the situation. With 8 times oversampling, common
today, the signal is converted from a sampling rate of 44.1kHz, to a sampling rate of
8*44.1kHz=352.8kHz. The process of increasing the sampling rate cannot increase the

352.8k 352.8k 0
F (Hz)

88.2k 44.1k 88.2k 44.1k 0
F (Hz)

information in the signal, so it still only has content to 20kHz. The advantge is that since
the sampling rate is 352.8kHz, the high frequency repetitions will start at 332.8kHz
instead of 24.1kHz. The analog reconstruction filter still needs to pass frequencies to
20kHz, but the stopband is now at 352kHz. Since the cutoff is so high, the phase shift
will also be at much higher, inaudible, frequencies.

So multirate techniques are usefull, but how is it done? In this experiment, we will only
consider increasing or decreasing the sampling rate by an integer amount.

Suppose we have an analog signal, x(t), that is band limited to 4kHz, with the magnitude
frequency response shown in figure 5.2. Let x(t) be sampled at two different sampling
frequencies. Let x1[n] be the discrete signal we get sampling at 8kHz, and x2[n] be the
signal we get sampling at 16kHz. The resulting magnitude frequency responces are
shown in figure 5.3. As long as there was no aliasing in the sampling, we can process
x1[n] to get a signal as if it had been sampled at 16kHz.

Figure 5.2. Magnitude frequency response of x(t).

Figure 5.3. Magnitude frequency responses

|X2(ω)|

|X(Ω)|

π -π -2π 2ππ
2

-π
2

2π*8k2π*4k0-2π*4k-2π*8k
Ω (radians/
 second)

0
ω (radians/
 sample)

.

. . .

|X1(ω)|

2π π 0-π -2π
ω (radians/
 sample)

. . .

Increase
A multirate system that increases the sampling rate is shown below. The sampling rate
change is done in two steps. First, zeros are added between existing samples, and second,
the resulting signal is low pass filtered.

Decrease
Decreasing the sampling rate is also done in two steps. First, the signal is low pass
filtered, then the signal is subsampled. (Subsampling means throwing samples away. For
example, subsampling by two means discarding every other sample.)

Assume we want to increase the sampling rate by two. This means inserting one zero
between each sample of x[n], then lowpass filter the resulting signal. Let the signal with
the inserted zeros be z[n], as shown below.

The following figures illustrate the procedure.

z[n]

Insert Zeros LPFx[n] y[n]

Subsample LPF x[n] y[n]

Insert Zeros LPFx[n] y[n]

0 1 2 3 4 5
-2

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

2

Figure 5.4. Original Signal, x[n].

0 2 4 6 8 1 0 1 2
-2

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

2

Figure5.4. Signal with added zeros, z[n].

0 2 4 6 8 1 0 1 2
-2

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

2

Figure 5.5. After lowpass filter, y[n].

To determine what lowpass filter to use, z[n] is studied.

=
oddn

evennnxnz
0
2][

and

)2(][0
2

][)(2 ωω ωωωω XkxnxnzZ
k

kj

oddn

nj

evenn

nj

n

nj eeee ==+

== ∑∑∑∑

∞

−∞=

−

=

−

=

−
∞

−∞=

−

This means that Z(ω) repeats twice as fast as X(ω). Since x[n] is a discrete signal, X(ω)
repeats every 2π. Also, since we are working with real signals, the magnitude of X(ω) is
even, and the phase is odd. An example signal is shown in figure 5.6.

Figure 5.6. Magnitude of Frequency Response of x[n] and z[n].

Compare figure 5.6 with figure 5.3. We need to process z[n] so that the output is like
x2[n]. We need a lowpass filter with a cutoff frequency of π/2. The output is shown in
figure 5.7.

. . .

|Z(ω)|

|X(ω)|

π -π-2π 2π π
2

-π
2

2π π 0-π-2π
ω (radians/
 sample)

0
ω (radians/
 sample)

. . .

.

Figure 5.7. Magnitude of Frequency Response of y[n].

Although not obvious at first sight, the LPF must have a gain of 2 for y[n] to have the
same amplitude as x[n].

When implementing this on the DSK, the frequencies for A/D and D/A are different. In
this case, the D/A frequency is twice that of the A/D. The control register of the AIC
must be set to asynchronous mode in order for the A/D and D/A frequencies to be
different. This is the same register used in experiment 2 when including and removing the
anti-aliasing filter in the AIC.

The anti-aliasing and reconstruction filters of the AIC can obscure the LP digital filter.
To see how well the LP digital filter is working, remove the anti-aliasing filter from the
input, and set the reconstruction filter as high as possible.

Experiments

Experiment 5.1
Modify loopc.c to output an input sample then three zeros. Set the AIC to asynchronous
mode. Set the input sampling frequency close to 4kHz, and the output sampling
frequency close to 16kHz. The output frequency must be exactly four times the input
frequency. Set the output filter bandwidth as high as possible, and remove the input filter.
Input a frequency of 1kHz and observe the output.

Experiment 5.2
Modify the program developed in experiment 5.1 to implement a multirate system that
increases the sampling rate by four. Input a frequency of 1kHz and observe the output.
Compare the output of this signal with the output of experiment 5.1.

Skills: After completing this experiment you should:
• Understand how multirate systems work
• Be able to implement a multirate system on the DSK

|Y(ω)|

π -π-2π 2π π
2

-π
2

0
ω (radians/
 sample)

.

6. Audio Effects (Echo, Reverb, Chorus, Flanging, etc.)

Purpose

The purpose of this experiment is to play with audio effects.

Background
A short description of echo, reverb, chorus and flanging is given below, but there are
many useful links on the web.

Echo

An echo is a delayed, attenuated version of a signal. The physical interpretation is shown
in Figure 6.1.

Figure 6.1. Direct and Reflected sound

The reflected sound has a longer path, so it reaches the listener later, and it bounces off a
wall, which absorbs some sound. A block diagram of a system with echo is shown below

This can be implemented as an FIR filter with impulse response,

Figure 6.2. Impulse response of echo filter

m1 20
n (samples)

input output

delay

sound
sourcelistener

][][][mnannh −+= δδ

The attenuation is a (0<a<1), and the delay is m samples. If the delay is very short, we do
not hear it as an echo, but as part of the direct sound. To hear the delayed part as a
separate signal, the delay should be at least 300ms.

Reverb

Reverberation, or reverb for short, is a simulation of sound in an enclosure. It can be
thought of as many densely packed echoes. The impulse response looks something like
this,

Figure 6.3. Impulse response of room showing echoes and reverb

Assume we are in a room as shown in Figure 6.1. The sound emitted by the source
generally goes in all directions. This sound bounces off the room boundaries, and can
take many paths in getting to the listener. These are the initial echoes. The sound does not
stop when it gets to the listener, but keeps bouncing off the room boundaries. With each
bounce the sound looses some power, and has a longer path to the listener.
It would take a very long FIR filter to implement a good sounding reverb, so it is usually
implemented with IIR filters. A simple system is shown below.

The impulse response will be infinite, and if the feedback is less than one, exponentially
decaying as shown below.

Figure 6.5. Impulse response of simple reverb filter

reverberation direct
sound

initial
echoes

input output

delay

0 1 2 3 4 5 6 7

A general form for IIR filter transfer functions is

A block diagram of an implementation is,

Figure 6.6. Block diagram of a general IIR filter

With this general model there can be feedback with different delays. The work is
choosing the coefficients so that it sounds good.

Chorus

A block diagram of the chorus effect is shown below.

The LFO is a low frequency oscillator. The output is the direct sound plus a pitch shifted
version, where the amount of pitch shift changes with time.

input output

delay

delay

delay

delay

delay

delay

input output

pitch shift

LFO

N
N

M
M

zaza

zbzbb
zH

−

−−

++−+

+++
=

L

L

11
)(

1

1
10

Flanging

Flanging is implemented by splitting a signal, delaying one of the signals with respect to
the other, then adding them together. A block diagram is shown below.

The flanging effect was named after the way it was implemented with reel-to-reel
machines. Two tapes of the same thing were played on two different machines. They
were started at the same time, and the operator slowed one of them down by placing a
thumb on the outside, or flange, of the reel. First one, then the other machine was slowed
down, so that the relative delay was constantly changing.

The effects described above are not the only effects used in practice, there are many
more. You can also implement an effect you make up - let your imagination run wild.

The main problem in implementing these effects will be the limited memory. These are
time based effects, so for example, the echo will be more noticeable the longer the delay
time. The DSK has 2k words of memory, and this has to be used for both the program
and data. Say 1k is reserved for data, so that 1024 data can be stored at a time. If we have
a sampling rate of 16kHz, 1024 samples is only 64m seconds. This is generally too short
to be heard. With a lower sampling rate, the delay will be longer.

Experiment

a. Modify loopc.c to implement an echo effect. Set the sampling rate to 6kHz to increase

the amount of delay. See how much you can increase the delay time. Input music from
a CD into the DSK and listen to the output.

b. Select one other effect to implement.

Skills: Upon completing this experiment you should:

• Have knowledge of various audio effects
• Know how implement an echo effect

input output

delay

LFO

7. Signal Quantization and Coefficient Precision (Round-off) effects

Purpose

The purpose of this experiment is to see the effects of signal quantization and coefficient
precision.

Background
Any implementation in hardware must take into account precision. Both the signal and
the system are represented in binary numbers in the DSK and have finite precision. An
in-depth study of precision requires a knowledge of stochastic processes, so we will only
look at its effects here. How does the number of bits used to represent a signal effect the
sound? What is the effect of using fewer and fewer bits for the coefficients in a filter?
What effect does using fewer and fewer bits for the multiplications and additions have on
the result? In this experiment, you will first listen to signal quantization, then study
system precision.

Quantization

When a signal is converted from analog to digital, it is represented using bits. This
representation by a finite number of bits is called quantization. The number of bits used
for each sample determines the amount of quantization done. A sample represented with
8 bits has more precision than one represented with 4 bits. The precision needed depends
on the application.

The process of going from an analog to a digital signal can be divided into two steps, as
shown in figure 7.1.

Figure 7.1. Sampling and Quantization Processes

The first step is sampling, the second is quantization. From the Nyquist theorem, we
know that if a signal is sampled at more than twice the highest frequency, then the signal
can be recovered exactly. This means that this step is reversible, and we could
theoretically go back to the original signal exactly. The quantization step is rounding off,
and this is irreversible. We are distorting the signal by doing quantization,so we cannot

nnt

Analog Signal Sampled Signal Quantized Signal

recover the original signal. One way of modeling quantization is as additive noise shown
in figure 7.2.

Figure 7.2. Model of Quantization

In this model, x[n] is the sampled signal, q[n] is the quantization noise, and xq[n] is the
quantized signal.

Lets study this process of quantization within a mathematical framework. Assume each
number is represented using n bits, and that the magnitude between quantizatin levels is ∆
(see figure 7.3). With n bits, there are 2n quantization levels. Twos complement binary is
typically used for representing the levels, so with n bits and uniform quantization, the
levels go from (-2n-1)∆ to (2n-1-1)∆. (2n total). For example, if n=2, then there are four
quantization levels, and using twos complement the levels go from -2∆ to 1∆.

Figure 7.3. n quantization levels.

Since ∆ is the magnitude between quantization levels, the maximum difference between
x[n] and xq[n] within the quantization levels is ∆/2. In other words, q[n] is bounded,

Since xq[n] can only take values between (-2n-1)∆ and (2n-1-1)∆, it is also bounded. It is
generally desirable for q[n] to be always bounded by ∆/2, not only within the
quantization levels. This can be done by bounding the signal by

x[n]

q[n]

xq[n]

(2n-1-1)∆

1∆
0

-1∆
-2∆

-2n-1∆

∆

.
2

][
2

∆
<<

∆
− nq

() () .
2

12][
2

2 11 ∆
+∆−<<

∆
−∆− −− nn nx

This mathematical framework can be used to determine how many bits are needed
depending on the signal quality desired. Quality in signals is usually measured as signal
to noise ratio in dB. In this case, the quantization is the noise, so the signal to noise ratio
is defined as

If the signal is a sine wave, Acos(ωn), then its average power is A2/2. For the example of
figure 7.3, the maximum power in the signal is,

The quantization is noise, and cannot usually be expressed with an equation. It is
generally modeled as a stochastic process. If we assume that the quantization is
independent of the signal, white, and uniformly distributed from -∆/2 to ∆/2, then the
average power in the quantization is calculated from its variance.

The signal to noise ratio after quantization is then,

The DSK quantizes using 14 bits, so it can have a maximum SNR of 86.05dB. This does
not mean every signal will have a SNR of 86.05dB, this is the SNR of a sine wave using
the maximum input amplitude. If we input a small signal, then some of the 14 bits will
always be zero, and the SNR will be smaller.

 The equation for SNR can be approximated as,

.log10 10 NoiseinPower
SignalinPowerSNR =

() () .2
2

2
2

2
2

2
2

12
232

21

2
1

2
1

∆=
∆

≈

 ∆

+∆−∆
=

 ∆

+∆−
= −

−
−−

n
n

nn

xP

{ } { }

.
12

1
3

221
3

1)(

][][][

2

33

2

2

32

2

2
2

2

2

222

∆
=

∆

 ∆
−−

 ∆

=

∆
=

∆
==

−==

∆

∆
−

∆

∆
−

∆

∆
−

∫∫
αααααα

σ

ddf

nqEnqEnqofVariance

q

q

().212log10

12
1

2log10

12

2log10 32
10

32
102

232
10

−
−−

∗==
∆

∆
= n

nn
SNR

() .78.102.6212log10 32
10 +≈∗= − nSNR n

This means that there is about a 6dB gain in SNR for every additional bit used. This gives
an easy way to relate how many bits are needed with the desired signal quality. For
example, it was determined that at least 45dB SNR was required for people to pay for
telephone service. This was the basis for choosing 8 bits for the system. Another example
is the CD. Taking into account the ambient noise in a home, and the maximum listening
levels, 90-100dB was considered sufficient for music reproduction. A CD uses 16 bits
and so has a SNR of about 98.1dB. In the new DVD-Audio, the signal can be represented
from 16 to 24 bits. 24 bits means a theoretical SNR of 144dB. 144dB is a lot! There is no
analog circuit that has noise this low. The thermal noise in one resistor is more than this,
so this SNR is not implementable unless the system is run close to absolute zero. There is
anecdotal evidence of this happenning to some students during dates, but no concrete
proof.

System Precision

In this experiment the system is a filter, so the system precision is determined by the
number of bits used to represent the filter coefficients and the number of bits used in
arithmetic operations such as multiplication and addition. Again, how much precision is
needed depends on the application. Find out what precision is used in MATLAB, and
what precision is available on the DSK.
Addition or multiplication using finite registers means the result will be rounded off. This
can be viewed similarly to quantization, where the rounding is modeled as additive noise.

Figure 7.4. Model of round off noise in addition or multiplication

Experiments

Experiment 7.1
a. Calculate the maximum and minimum voltages the AIC can accept without clipping.
b. Calculate the voltage difference between quantization levels, ∆, for the AIC.
c. Connect the function generator to the input, and use either loopi.asm or loopc.c to

listen to the output. Using the oscilloscope, make sure you are using the full input and
output voltages of the AIC. Quantize an audio signal starting at 14 bits and gradually
reduce the number of bits used. At what bit level does the quantization become
audible?

d. Change the input to music and repeat the experiment. Is the quantization audible at the
same bit level?

Infinite
precision

result
∗

Rounded
result

round off
noise

Element 2

Element 1

Experiment 7.2
a. Design a 20th order BP Chebychev type 1 filter with 0.5dB of ripple and a passband

from .2 to .5 rad/sam in MATLAB. Reduce the coefficient precision to four decimal
places using Direct Form I and Cascade Form. Plot the magnitude bode plot and pole-
zero plots for the three filters. How do they compare? Which implementation is more
sensitive to coefficient round off?

b. Implement the filter in Direct Form I with and without cascade form using the
program written in experiment 3. Verify the results calculated in MATLAB.

Skills: Upon completing this experiment you should:

• Have a working knowledge of the relation between how many bits are used to
represent a signal and how it sounds

• Know different methods of implementing filters and the advantages of each
• Know what effect implementation has on system performance
• Know what effect precision has on system performance

8. Fast Fourier Transform (FFT) implementation

Purpose

The purpose of this experiment is to implement the FFT in real time.

Background

Fast Fourier Transform (FFT)

In this experiment you will implement a FFT in real time. The FFT is one of the most
used algorithms in signal processing, and can be used for a wide variety of tasks such as
implementing filters and determining the spectral content of signals. You will implement
an FFT written by Texas Instruments in assembly, and also write one in C.
The FFT program in assembly is divided into two parts: a C program that reads and
writes from the AIC and calculates the magnitude of the FFT, and an assembly
subroutine that implements the FFT. The FFT was written in Assembly to speed up the
implementation. It is easier to write programs in C, but programs in Assembly are faster.
To avoid writing the whole program in Assembly, the main part of the program is in C,
with computationally intensive parts in Assembly, where the difference between writing
in C and Assembly is greatest.

To change the size of the FFT program, the memory use may have to change. The
fft12c.cmd program defines the memory usage as follows:

A C program will have three memory areas, the text, the stack and the heap. The text area
is where the program is located, the stack is where local variables are saved, and the heap
is where global and static variables are saved. When the program is started, space for the
global and static variables is allocated in the heap. When main() is started, space for its
local variables is allocated on the stack. If a subroutine subr() is called, the arguments
passed to the subroutine are stored on the stack and space for local variables from subr()
is allocated on the stack. When the subroutine ends, space for the local variables from
subr() is de-allocated, and the stack returns to its previous size.
When changing the size of the FFT, we must have enough space on the stack and heap to
save the data. To determine the size of the stack and heap, determine the space needed for
the global and local variables.

Experiments

Experiment 8.1
Compile, assemble, link and run fft128c.c. Input a sine wave.
a. Determine the relation between the signal amplitude and frequency and the fft output.
b. Look at the shape of the fft output. Slowly change the frequency of the input by small

amounts and notice how the sidelobes change. Why does this happen?
c. Try to increase the size of the FFT. To do this you will have to change the memory

allocation in the linker, have new twiddle factors, and change the length and stages
variables of the main program. What is the largest FFT you can implement?

Experiment 8.2
Write a subroutine in C to substitute the subroutine in assembly from experiment 8.1.
What is the largest FFT that can be implemented?

Skills: Upon completing this experiment you should:

• Understand and be able to program the FFT algorithm
• Know how to optimize the memory usage

9. Integrating Assembly Subroutines with programs in C

Purpose

The purpose of this experiment is to learn how to integrate subroutines written in
Assembly with programs in C.

Background

In this experiment you will implement a mixed C/Assembly program that implements a
filter. Part of the program will be written in C, the other part in Assembly. You will need
to know how to call assembly subroutines from C, and how to define variables. The
variables can be defined in C or in Assembly, but must be accessible to both parts of the
program. This section is divided into three parts:

• Calling Assembly subroutines from C
• Using variables declared in C in the Assembly Subroutine
• Using variables declared in the Assembly Subroutine in C

Calling Assembly subroutines from C

The FFT program in the previous experiment is an excellent example of how to
implement programs in C with subroutines in Assembly. Another simpler example is
shown in Figures 8.1 and 8.2.

In this example, the input and output is done in C. The input value is passed to the
subroutine, the subroutine calculates the absolute value and returns this new value to the
C program. Let us go through the program step by step to see the main points of writing
subroutines in assembly from C.

The subroutine must be declared as external in the C program, and as global in the
Assembly program. This name must have an underscore (_asmab) in the Assembly
subroutine because it is defined in the C program. In general, any variable in the C
program can be made available in the Assembly subroutine if it is defined this way.

/* casm.c - C PROGRAM with subroutine in assembly */

#include "aiccom.c" /*AIC Communication routines */

int AICSEC[4] = {0x0A14,0x1,0x3E7E,0x63};
extern int asmab(int); /* Define the external Assembly*/
 /* subroutine */

main()
{
 int data_in, data_out; /*Initialize variables */

 AICSET(); /*Function to config AIC*/

 while (1) /*Create endless loop */
 {
 data_in = UPDATE_SAMPLE(data_out); /*Call function to update sample*/
 data_out=asmab(data_in); /* Call assebly subroutine */
 }
}

Figure 8.1. C program that calls an Assembly Subroutine

;Assembly language program called from casm.c.
;It returns the absolute value of the value passed from C.

FP .set AR3
 .global _asmab ;declare external function

_asmab:
 push FP ;save frame pointer on stack
 ldi SP,FP ;point to top of stack
 push R6 ;save R6
 push R7 ;save R7

 LDI *-FP(2),R6 ;new sample -> R6
 ABSI R6,R7 ;place absolute value of R6 in R7
 LDI R7,R0 ;place output in R0

 pop R7
 pop R6
 pop FP
 rets

Figure 8.2. Assembly subroutine called from casm.c

The subroutine executes the following commands:

push FP ;save frame pointer on stack
ldi SP,FP ;point to top of stack

The frame pointer is pushed onto the stack, and is then used as the local frame pointer. SP
is the stack pointer, and points to the top of the stack. AR3 is the frame pointer (defined
here as FP), and points to the beginning of the local frame. See Figure 8.3 below.

Figure 8.3. Stack use during a function call. (from TI C Compiler User's Guide, 1997)

push R6 ;save R6
push R7 ;save R7

Registers R6 and R7 are used in the subroutine, so their values are also saved to the stack
before using. In general, registers R4-R7 and AR4-AR7 must be saved before using, and
restored before returning. If other registers are used, they do not need to be saved.

LDI *-FP(2),R6 ;new sample -> R6
The sample passed from the C program to the subroutine is placed in R6. When calling
asmab(), the C program writes data to the stack, including the values, or arguments, to be
sent to the subroutine. These arguments can be accessed by the subroutine using a
relative address, in this case, *-FP(2). If there is more than one argument sent, the first
argument will be at *-FP(2), the second at *-FP(3), and so forth. See Figure 8.3 above.

ABSI R6,R7 ;place absolute value of R6 in R7
 LDI R7,R0 ;place output in R0
The absolute value is calculated, and the result placed in R0. R0 is used for returning
arguments from the subroutine to the C program. In the C program, data_out is assigned
the value returned from the subroutine, so data_out = R0.

SP

FP

Old FP

SP

FP

SP

FP low

high
Callers
local

variables

Before Call to
Subroutine

Callers
local

variables

argument 1
.
.

argument n

Push Arguments on
stack

return address

Stack during
Subroutine

Old FP

Subroutines
local

variables

Callers
local

variables

argument 1
.
.

argument n

return address

 pop R7
 pop R6
 pop FP

 rets
The original values of R6, R7 and the frame pointer are read from the stack, and the
subroutine ends with a return command.

Using variables declared in C in the Assembly Subroutine

There are various ways of having variables declared in C available to the Assembly
subroutine. Some of these are:

• Sending variables as arguments to the subroutine
• Sending a pointer to an array
• Declaring the variables as global

The first method was shown in the example above. The FFT program from Experiment 8
uses a different approach. Since the FFT has length 128, it would not be practical to send
the 128 data points as arguments to the subroutine. Instead, the FFT program sends a
pointer to the array used. An example showing both how to pass a pointer to an array and
how to declare variables as global is shown in figures 8.4 and 8.5.

/* c_prog.c - C PROGRAM with subroutine in assembly */

#include "aiccom.c" /*AIC Communication routines */
int AICSEC[4] = {0x0A14,0x1,0x3E7E,0x63};
extern int asmarray(float *,int *); /* Define the external Assembly

subroutine */
float x[20]; /* Define global
int y[20],cvar; variables */

main()
{
 int data_in, data_out; /*Define local variables */
 AICSET(); /*Function to config AIC*/
 x[2]=1.5;
 y[0]=2;

 while (1) /*Create endless loop */
 {
 data_in = UPDATE_SAMPLE(data_out); /*Call function to update sample*/
 data_out=asmarray((float *)x,(int *)y); /* Call assebly subroutine */
 }
}

Figure 8.4. C program that calls an Assembly Subroutine

;Assembly language program called from c_prog.c.
;It multiplies x[2] with y[0], then adds cvar.

FP .set AR3
 .global _asmarray ;declare external function
 .global _cvar ;declare external variable

_asmarray:
 push FP ;save frame pointer on stack
 ldi SP,FP ;point to top of stack
 push R6 ;save R6
 push R7 ;save R7
 LDI *-FP(2),AR0 ;pointer to x[0] -> AR0

LDI *-FP(3),AR1 ;pointer to y[0] -> AR1

FLOAT *AR1,R7 :convert y[0] from int to float -> R7

 MPYF3 *AR0(2),R7,R6 ;multiply x[2] with R7 -> R6
 FIX R6,R0 ;convert from float to int, place in R0

LDI @_cvar,AR2 ;cvar -> AR2
ADDI AR2,R0 ;AR2 + R0 -> R0

 pop R7
 pop R6
 pop FP
 rets

Figure 8.5. Assembly subroutine called from c_prog.c

Using variables declared in the Assembly Subroutine in C

Most variables will be defined in C and used in both C and Assembly. One situation
where it is more convenient to define variables in Assembly is when we want to use
circular addressing. The data must be aligned on a boundary so that the circular
addressing will work correctly. This is easily done in Assembly.

As mentioned in the TMS320C3x/C4x Optimizing C Compiler User's Guide, there are
three ways of accessing Assembly variables in C. Only one will be mentioned here, refer
to the User's Guide for the other two. The example below is from the User's Guide.

.global _sine ;Declare variable as global
 .usect "sine_tab",4 ;Make a separate section for the sine variable
_sine:
 .float 0.0
 .float 0.015987
 .float 0.022145

Figure 8.6. Assembly subroutine

extern float sine[]; /* Define external object */
float *sine_p = sine; /* Declare pointer to sine */

f = sine_p[1]; /* Access sine as normal array */

Figure 8.7. C Program

Note: The variable cannot be accessed using code like sine[1].

As mentioned above, the main reason for using this type of declaration is to be able to put
the variable at a segment boundary, and use circular addressing with no problem. Once
the section is defined using .usect, space for this section must be separated in in the linker
command file. Part of the cmd file is shown in Figure 8.8.

MEMORY
{
 VECS: org = 0 len = 0x40 /*INTERRUPT VECTORS*/
 SRAM: org = 0x40 len = 0x3FC0 /*USER STATIC RAM*/
 RAM0: org = 0x809800 len = 0x750 /*INTERNAL RAM */
 RAM1: org=0x809FB0 len=0x50 /*memory for sine_tab section*/
}

SECTIONS
{
 .text: {} > SRAM /*CODE*/
 .cinit: {} > RAM0 /*INITIALIZATION TABLES*/
 .stack: {} > RAM0 /*SYSTEM STACK*/
 .bss: {} > RAM0 /*BSS SECTION*/
 sine_tab {} > RAM1 /*sine_tab section*/
 vecs: {} > VECS /*VECTOR SECTION*/
}

Figure 8.8. cmd file to place sine_tab section where desired.

Experiment

Modify loopc.c to filter a signal with an assembly subroutine. The input and output must
be done with updatesample in main(), and the rest of the processing done in the Assembly
subroutine.

Skills: Upon completing this experiment you should:

• Know how to implement and call subroutines in Assembly from C using the DSK
• Be a better person
• Have good moves
• Dedicate your lives to things of importance
• Have lots of money

